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Millimeter-Wave Diplexers with Printed
Circuit Elements ~

YI-CHI SHIH, MEMBER, IEEE, LONG Q. BUI, AND TATSUO ITOH, FELLOW, IEEE

Abstract —A novel design of W-band (75-110 GHz) noncontiguous

diplexers is described. The common port of the diplexer is fed by sns-

pended probe transitions which are suitable for wide-band applications. The

circuit is printed on a single snbstrate and easily assembled in a spfit-block

housing. The measured insertion loss at the passbands is about 1 dB. The

calculated frequency response of a diplexer is in good agreement with the

measurement.

I. INTRODUCTION

R ECENT ADVANCES in the design of millimeter-wave

channelized receivers have created a need for small,

integrated high-performance diplexers and multiplexer

[1]-[4]. However, the design information on these compo-

nents is very limited. In [2], the authors have designed a

diplexer consisting of two E-plane filters and a waveguide

T-junction. Since the reactance of the T-junction varies

relatively rapidly as a function of frequency, it is difficult

to compensate for the reactance in order to design di-

plexers with wide-band performance using this scheme. In

this paper, we will describe a novel design of a millimeter-

wave noncontiguous diplexer that is capable of wide-band

applications. Channel bandwidths as wide as 10 GHz can

now be achieved with an insertion loss of about 1 dB at W

band. In Section II, the diplexer structure is described and

the, design principle is discussed. Section 111 provides a

brief discussion on the theoretical analysis for the diplexer.

Section IV summarizes the results of both the theory and

measurement. Good agreements are obtained.

II. DIPLEXER DESIGN

Fig. 1 shows a typical layout of the diplexer. lt consists

of two band-select filters and two waveguide-to-

suspended-stripline probe transitions. The filters are E-

plane filters [5]–[7] which can be bilateral, unilateral, or a

combination of both. The complete circuit is fabricated on

a single substrate, which is then cut to size and placed in a

-split-block housing.

The use of waveguide-to-suspended-stripline transitions

at the common port of the diplexer makes is possible for

wide-band applications. The idea stems from our experi-

ence in the desigm of suspended-stnpline circuits at milli-

meter-wave frequencies, where a good transition has been

designed to cover the full W-band (75-110 GHz). The
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Fig. 1. Pb ysical configuration of a diplexer.

design is a refinement of the work done by the other

designers in this field [8].

There are two probe transitions, i.e., the input-port

probe and the common-port probe. The input-port probe

transition is very similar to the conventional coaxial-to-

waveguide adaptor. One end of the suspended-strip probe

is inserted into the broadside of the waveguide about one

quarter-wavelength deep, and a waveguide backshort is

located behind the probe to optimize the coupling. The

other end of the probe is the common-port input to the

diplexer and works in a similar way; however, this coupling

structure is quite different. There are no waveguide back-

shorts but the bandpass filters. The transition works be-

cause at the passband of one channel, the other filter will

reflect almost all the energy, and thus serves as al good

short circuit. In this case, the loading effects of each filter

at the short-circuit reference planes are required for the

design of the transition and must be included in the net

design of the diplexer to ensure good response. This re-

quirement makes the E-plane filters an ideal candidate

because of the existing accurate analytical modeling.

High-performance E-plane filters have been designed lJp to

160 GHz using our modeling technique, and we have

found excellent correlation between theory, and measured

data [7].

The filters may have any E-plane configuration, as de-
fined earlier; however, because of the suspended-strip tran-

sition, we found it more convenient to make the filters and

transitions on a single substrate. Furthermore, we have

found that for the same filter specifications, the bilateral
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Fig. 2. (a) Stripline-to-waveguide T-Junction, (b) the eqmvalent circuit,
and (c) the S-matrix representation

structure offers a loss performance comparable with, and

sometimes superior to, that of the metal-insert structure.

Note that the diplexer contains three parts: the upper and

lower halves of the split block and the printed circuit. It is

a very low-cost structure.

111. ANALYSIS

In a recent study [9], we analyzed a rnicrostrip-to-wave-

guide transition using an approximate theory. The probe

transition is considered as a monopole antenna radiating

into the waveguide. Based on an assumed current distribu-

tion on the probe antenna, a variational expression has

been derived in the spectral domain for the input imped-

ance at the feed point. An equivalent circuit is then derived

as shown in Fig. 2(b) for the transition in Fig. 2(a). The

expressions for the turn ratio R and the reactance jx will

be presented in [9].

The three-port transition junction can then be repre-

sented by a 3 X 3 scattering matrix. The S-parameters are

‘] ‘2 “ “2
T,

I 1~[11 I
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W

(a)

(b)

Fig. 3. (a) The printed-cmcnit part of the dlplexer, and (b) the S-matrix
network represent ation.

derived from the equivalent circuit as

R2( jx + Zw/2)– ZS
Sll =

R2( jx + Zw/2)+ Zs

– R2Zw/2
S22= S33=

R2( jx + Zw/2)+Zs

S21= S31= S12= S13

= R2(jx + Zw/2)+Zs

S23= S32=
jxR2 + Zs

R2( jx + Zw/2)+Zs “

We can now proceed to analyze the diplexer structure as

shown in Fig. 3(a), where two channel filters have been

connected to a common probe transition. The S-parame-

ters for the E-plane filters are readily available from [5].

Taking into account the distance between the filters and

the transition, we obtain the network representation in Fig.

3(b). The overall S-parameters for the diplexer are then

obtained using the network combining technique described

in the Appendix.

IV. RESULTS

The waveguide-to-suspended-strip transition is essential

for the diplexer design. Therefore, we have tested numer-

ous J?’-band transition circuits to find a good combination.

Fig. 4 depicts the geometry and the dimensions of an

operating ~-band transition. The circuit is designed on an

RT-5890 Duroid substrate whose dielectric constant is 2.0.

We have analyzed, fabricated, and tested two such transi-

tions connected back-to-back by a l-in-long suspended

stripline. The results are shown in Fig. 5 with good agree-

ment between the theory and measurement. The return loss

is better than 15 dB, and the measured insertion loss is
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Fig. 4. Cross-section view of a W-band waveguide-to-suspended-strip
transition in WR-10 waveguide.

Fig. 5.

TABLE I

DIMENSIONS FOR A W-BAND DIPLEXER (ALL UNITS IN MILS)

w, .W4 W2= w, d, = d3
‘2

1 w s

Filter 1 3.0 20.9 63.4 64.4 27

Filter 2 8.7 37.4 45.2 44.9 27

Probe 12 32

better than 0.7 dB (not shown) over the W-band frequen-

cies.

The E-plane filters are designed- using the procedures

described in [5]-[7]. As an example, we have designed two

3-cavity bilateral E-plane filters having 5-GHz bandwidths

centered at 87.5 and 102.5 GHz, with passband ripples of

0.2 and 0.1 dB, respectively. The dimensions of the filters

are listed in Table I for a dielectric substrate of 5-roil thick.

Both the theoretical and experimental results are shown in

Fig. 6 for comparison. The measured insertion loss is less

than 1 dB in the passband of both filters. In the analyses,

we have also obtained the short-circuit reference location

for each filter at the passband frequencies of the other

filter. Based on this information, the relative locations of

the filters with respect to the probe are then adjusted to

yield a complete diplexer.

Fig. 7 is the picture of a complete diplexer. The E-plane

filters and the transitions are fabricated on a single 5-roil

substrate using chemical etching. The circuit is then cut
and placed in the split-block housing. The diplexer was

evaluated over the frequencies of interest and its perfor-

mance is shown in Fig. 8. A close agreement is found

between the theoretical and experimental data. In the

passband of the channels, the return loss is more than 10

FREIIJENCY (GHz)

(a)

FREQuENCY (GHZ)

(b)

Fig. 6. (a) Insertion loss, and (b) return loss of E-plane filters (–—

theory, ● measurement).

Fig. 7. Photograph of a completed W-band diplexer.

dB, and more typically 15 dB. The measured insertion loss

is typically 1 dB. Notice that each channel very much

preserves the characteristics of the corresponding filter,

except that the upper-end rejection of the lower channel

has a slight improvement.

Diplexers having wider channel passbands can also be

built in a similar manner. For example, Fig. 9 shows the
performance of a diplexer having a 1O-GHZ passband for

both channels. A 1O-GHZ guard band is placed between

the two channels. Tlhe input return loss in the passbaml of

the channels is more than 12 dB, and the insertion loss

about 1 dB.
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Fig. 8. The (a) insertion loss and (b) return loss of a diplexer shown in
Fig, 7 (— theory, o measurement),
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Fig. 9. The measured (a) return loss (b) insertion loss of a diplexer with
1O-GHZ channel bandwidths.

V. CONCLUSION

The combination of the E-plane filters and a unique

suspended probe transition imbedded at the common port

has resulted in the design of high-performance and low-cost

diplexers with wide channel bandwidths. The complete

circuit is printed on a single substrate and is easily assem-

bled in a split-block housing. This makes it highly repro-
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Fig. 10. The network combination scheme for a two-port and a three-
port network.

ducible using photolithographic techniques. Typical W-

band diplexers exhibit about l-dB insertion loss over the

channel passbands.

~ombining the probe-transition analysis program with

the E-plane filter analysis program, we have calculated the

frequency response of a diplexer in good agreement with

the measurement.

APPENDIX

llefer to Fig. 10. Port j of a 2-port network Z is

connected to port k of a 3-port network S. The result is a

3-port network S’ with the following elements:

S;= Zl,FZ,lS~~Zj[

S;= S[[ + FS\~ZjJS~[

S:m = S.. + Fs./&skm

S:[ = Sml+ FSmkZJIS~l

S;m= S\m+ FS[kZJ,Sn,[

S;= Fz,lsk[

S;m= FZ,JSkm

S;= FS1kZj,

S;, = FSm~ZJ,

where

[1]

[2]

[3]

[4]

1
F=

1 – Skkz,j “
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